Simple and efficient speaker comparison using approximate KL divergence

نویسندگان

  • William M. Campbell
  • Zahi N. Karam
چکیده

We describe a simple, novel, and efficient system for speaker comparison with two main components. First, the system uses a new approximate KL divergence distance extending earlier GMM parameter vector SVM kernels. The approximate distance incorporates data-dependent mixture weights as well as the standard MAP-adapted GMM mean parameters. Second, the system applies a weighted nuisance projection method for channel compensation. A simple eigenvector method of training is presented. The resulting speaker comparison system is straightforward to implement and is computationally simple— only two low-rank matrix multiplies and an inner product are needed for comparison of two GMM parameter vectors. We demonstrate the approach on a NIST 2008 speaker recognition evaluation task. We provide insight into what methods, parameters, and features are critical for good performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Addressing the Data-Imbalance Problem in Kernel-Based Speaker Verification via Utterance Partitioning and Speaker Comparison

GMM-SVM has become a promising approach to textindependent speaker verification. However, a problematic issue of this approach is the extremely serious imbalance between the numbers of speaker-class and impostor-class utterances available for training the speaker-dependent SVMs. This data-imbalance problem can be addressed by (1) creating more speaker-class supervectors for SVM training through...

متن کامل

KL realignment for speaker diarization with multiple feature streams

This paper aims at investigating the use of Kullback-Leibler (KL) divergence based realignment with application to speaker diarization. The use of KL divergence based realignment operates directly on the speaker posterior distribution estimates and is compared with traditional realignment performed using HMM/GMM system. We hypothesize that using posterior estimates to re-align speaker boundarie...

متن کامل

A model space framework for efficient speaker detection

In this paper, we investigate the use of a distance between Gaussian mixture models for speaker detection. The proposed distance is derived from the KL divergence and is defined as a Euclidean distance in a particular model space. This distance is simply computable directly from the model parameters thus leading to a very efficient scoring process. This new framework for scoring is compared to ...

متن کامل

Speaker verification using speaker- and test-dependent fast score normalization

A novel score normalization scheme for speaker verification is presented. The proposed technique is based on the widely used testnormalization method (Tnorm), which compensates test-dependent variability using a fixed cohort of impostors. The new procedure selects a speaker-dependent subset of impostor models from the fixed cohort using a distance-based criterion. Selection of the sub-cohort is...

متن کامل

Tree-structured Gaussian process approximations Supplementary material

subject to q(f |u) = ∏ i q(fi|u) and ∫ dfiq(fi|u) = 1. It is noted that KL(a||b) is the measurement of information “lost” when using b to approximate a. It was argued in [1] that it is appropriate to use this KL divergence as an approximation measure since we are trying to find a sparse representation u and its relationship with f to approximate p by q. The KL divergence above can be expanded a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010